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I. INTRODUCTION 

Acceleration of a particle beam across transition will usually lead to an increase 

in the bunch area and a loss in beam intensity. This is because (1) different particle 

crosses transition at different time leaving behind two tails in the longitudinal phase 

space, and (2) the beam becomes microwave unstable when the phase-slip factor 

7 = l/r: - l/ya is negligibly small. Tracking simulation’ indicates that particle 

loss will be about 20% and the bunch area growth can be a factor of 2 - 3 for the 

proposed Fermilab Main Injector. These problems can be avoided by implementing a 

7= jump system, which consists of pulsing quadrupole magnets to change the optics 

of the accelerator in such a way as to drop rT of the machine instantly as the beam 

approaches transition. Under this situation, the particles cross transition so fast 

that none of the nuisances mentioned above would have time to develop. However, 

changing the optics of the ring instantly will lead to a sudden growth in the transverse 

emittance of the beam, which is certainly undesired. To preserve the transverse 

emittance, the 7= jump has to be performed adiabatically. It is the purpose of this 

paper to find out the shortest time of the jump so that the transverse emittance will 

not be disturbed significantly. 

II. THE MODEL 

Consider the particle in the bunch which has the largest fractional energy offset 6 

(corresponding to 95% bunch area). This particle has a maximum transverse offset of 

Xj6 from the synchronous orbit, where Xb is the maximum momentum dispersion of 

the ring. Now for the performance of 7= jump, the quadrupoles are pulsed so that the 

maximum dispersion changes to the final value of X,’ in n turns. Suppose that the 

*Operated by the Universities Research Association, Inc., under contract with the U.S. Depart- 

ment of Energy. 
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dispersion is changed evenly as k = (Xi - Xj)/ p n er t urn. Therefore, this particle is 

performing Matron oscillations about a different closed orbit in a different turn. 

The equation of motion of z, the transverse displacement of the particle from the 

synchronous orbit, is, in our simplified model, 

z” + K(s)(z - X,6) = 0 , (2.1) 

where the prime is differentiation with respect to s, the distance measured along the 

synchronous orbit from some reference point where the dispersion is a maximum and 

the betatron function p is a local maximum, K(s) is the quadrupole strength, and 

X*=X;+mk, (2.2) 

is the our assumed dispersion for the mth turn. This is the model of of an oscillator 

driven by a force K(s)X&, which changes abruptly whenever the particle passes 

through the reference point at every turn. The particle position + as well as the angle 

z’ are therefore continuous at the reference point. This model is reasonable because 

the pulsing of the quadrupoles during the rT jump is performed in such a way that 

the phase advance and tune of the accelerator ring are essentially unchanged. 

According to the equation of motion, the transverse position of the particle at the 

mth turn relative to the synchronous orbit is 

z,,,=(X~+mk)6+a,cos++b,,,sin?l, m= 0, 1, 2, ... ) (2.3) 

where $ is the Floquet phase advance along the synchronous orbit measured from 

some reference point. For every revolution around the ring $J increases by p = 2ru, 

where v is the betatron tune. For convenience, we set $ = 0 at the beginning of every 

turn. In general a, and b, are proportional to the square root of the betatron function 

p along the ring. However, since we are interested in only the reference point, we 

have 

%a- = (X; + mk)S + a, beginning of mth turn, 

z,+ = (Xj + mk)6 + a, cos p + b,,, sin p 
(2.4) 

end of mth turn, 

and 
I-- b, z, -- 

P 
beginning of mth turn, 

ff- b (2.5) 

%A --~sin~+~cos~ end of mth turn. 
P P 
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Here, a, and b,,,/p represent the betatron oscillation amplitude and angular deviation 

at the reference point. The emittance of this off-energy particle is therefore given by 
1 pm E=Tr-- 
P 

with Tm==&Ti& 

From the continuation of 2, and c(,, across the reference point, we obtain 

a, = -k6 + a,-1 cos p + b,-1 sinp , 

b,,, = --a,-1 sinp + b,,,-l cosp . (2.7) 

The eventual maximum transverse displacement of the particle will be given by 

%,=Xpf6tf,, (2.8) 

where T, is the betatron amplitude at the nth turn. 

III. SPECIAL CASES 

1. Integer tune 

If the tune v is an integer, the particle returns to its original position after each 

turn, although the off-energy closed orbit is altered every turn. Thus the betatron 

amplitude is always equal to mk6 in the mth turn, if we start with a,, = b,, = 0. The 

final transverse displacement is therefore 

+,,,a= = Xpf6 + nk6 = (2X,’ + X$5, (3.1) 

which is the same as having the quadrupole pulsed to the final value in only one turn. 

2. Half-integer tune 

Starting from a0 = bo = 0 and a half-integer tune, it is obvious that b, = 0. Since 

the off-energy closed orbit changes by the same amount every turn, the displacement 

of the particle can be followed easily. The results for the first 7 turns are listed in 

Table I. We see that the amplitude of betatron oscillation T, is either zero or one unit 

of the shift of the off-energy closed orbit k6 depending on whether the turn number 

is even or odd. Therefore, the maximum transverse displacement of the beam is 

z, = [xi + i(XJ - x;,] 6 (3.2) 
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Turn No. 

in k 

0 

a, in k6 

beginning 

0 

-1 

0 

-1 

0 

-1 

0 

T f 

! 

:nd 

0 

1 

0 

1 

0 

1 

0 

Table I: Betatron oscillation amplitude for the first 7 turns at half-integer tune 

IV. GENERAL SOLUTION 

With any other tunes, the betatron oscillation of the particle is in between the 

worst scenario of integer tune and the best scenario of half-integer tune. The betatron 

oscillation amplitude of the off-energy particle can be computed from Eqs. (2.7), which 

we rewrite as 

where 

0 

k6 

cosp sinp 

\ -sinp ~0s~ I 

, (4.1) 

(4.2) 

is the transportation matrix of one revolution around the ring from the quadrupole 

back to the quadrupole or just the rotation matrix of an angle p. We can easily 

iterate Eq. (4.1) to give 

(;j=‘-( ;;)-,$~on--( k;) ’ (4.3) 

If the initial betatron oscillation is negligibly small or a,, - 0, b. - 0, Eq. (4.3) reduces 

to (:j =-kS( :::::m_;j ’ (4.4) 
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which can be summed easily to give 

(1:) =-k6( Tz)e-i+P!t&%, 
OI 

= -k6 ( 
sin tpcos yj~ 

sin fp 
I 

sin ;p cos n--1fi 

sin a/~ a I. 
The betatron oscillation amplitude is therefore 

AX,6 sin:p 
T,=-- , 

n 
I I sin fp 

where we have made the substitution k = AX,/n = (X,’ - X:)/n. 

(4.5) 

(4.6) 

(4.7) 

It is clear from Eq. (4.7) that when the betatron tune is an integer, nothing can 

be gained by pulsing the quadrupoles adiabatically, as was pointed out in Section III. 

When the tune is of half-integer, the result of Section III.2 is reproduced. 

As is shown in Eq. (4.7), r,, is very sensitive to the tune. For example, if the 

residual tune [v] = 0.25, T, vanishes exactly whenever n is a multiple of 4. This 

peculiar result comes about because aa and bo are not exactly zero to begin with and 

that our model, Eq. (2.1), has been too simple. In order to obtain a more meaningful 

result, we replaced 1 sin n/1/21 by its maximum value unity, except when the tune is 

very near to an integer. Then the betatron amplitude becomes 

AX,6 1 
r,=-- . 

n 
I 1 sin + p 

(4.8) 

We see that the last factor is roughly less than 2 when the residual tune is between 

0.15 and 0.85. 
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V. ADIABATIC CRITERION 

We would like the final betatron oscillation much less than the initial betatron 

oscillation. Therefore, the adiabatic criterion is 

(5.1) 

where Ap is the amplitude of betatron oscillation at maximum p before transition, 

which is related to the normalized emittance 6 by 

For the Main Injector, E = 20~ mm-mr (95%), maximum p = 57 m, and rT = 

20.4. Therefore Ap = 0.00748 m. One proposal* of yT jump boosts the momentum 

dispersion according to 

X, = 2.2 + 4.8(Ay,)s m, (5.3) 

or AX, = X,’ - Xj = 4.8 m for AyT = 1. The fractional momentum spread is 

6 = 6.00 x 10-3Ay,-+ 
(0.4 :V-s> a (2.78 ;;:::37.6”) -’ ’ (5’4) 

The proposed tune is Y = 22.42, giving l/l sinp/21 = 1.032. In order that the nona- 

diabatic increase in transverse phase space is less than l%, the minimum number 

of turns for pulsing the quadrupole should be 40 or for a minimum pulsing inter- 

val of 0.44 ms. This gives + = 2260 set-I. If a jump of AYE = 1.5 is preferred, 

X,f - Xj = 5.88 m and 6 = 5.42 x 10w3. The minimum number of turns becomes 

44 or 0.49 ms, corresponding to + = 2050 set- ‘. Note that if the tune were far away 

from an half-integer, the minimum number of turns would become much bigger. 
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